Chemical probes for higher-order structure in RNA.

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chemical probes for higher-order structure in RNA.

Three chemical reactions can probe the secondary and tertiary interactions of RNA molecules in solution. Dimethyl sulfate monitors the N-7 of guanosines and senses tertiary interactions there, diethyl pyrocarbonate detects stacking of adenosines, and an alternate dimethyl sulfate reaction examines the N-3 of cytidines and thus probes base pairing. The reactions work between 0 degrees C and 90 d...

متن کامل

Higher-order chemical sensing.

6.2. Orthogonality versus Independence 584 6.3. Cross-sensitivity and Diversity 585 6.4. Multiple Roles of Redundancy 585 7. Data Preprocessing 586 7.1. Baseline Correction 586 7.2. Scaling 587 7.2.1. Global Techniques 588 7.2.2. Local Techniques 588 7.2.3. Nonlinear Transforms 588 8. Drift Compensation 588 8.1. Univariate Drift Compensation 589 8.2. Multivariate Drift Compensation 589 9. Featu...

متن کامل

Higher-Order Chemical Programming Style

The chemical reaction metaphor describes computation in terms of a chemical solution in which molecules interact freely according to reaction rules. Chemical solutions are represented by multisets of elements and reactions by rewrite rules which consume and produce new elements according to conditions. The chemical programming style allows to write many programs in a very elegant way. We go one...

متن کامل

Insight into amyloid structure using chemical probes.

Alzheimer's disease (AD) is a common neurodegenerative disorder characterized by the deposition of amyloids in the brain. One prominent form of amyloid is composed of repeating units of the amyloid-β (Aβ) peptide. Over the past decade, it has become clear that these Aβ amyloids are not homogeneous; rather, they are composed of a series of structures varying in their overall size and shape and t...

متن کامل

Methods for identifying higher-order chromatin structure.

Eukaryotic genomic DNA is combined with histones, nonhistone proteins, and RNA to form chromatin, which is extensively packaged hierarchically to fit inside a cell's nucleus. The nucleosome-comprising a histone octamer with 147 base pairs of DNA wrapped around it-is the initial level and the repeating unit of chromatin packaging, which electron microscopy first made visible to the human eye as ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the National Academy of Sciences

سال: 1980

ISSN: 0027-8424,1091-6490

DOI: 10.1073/pnas.77.8.4679